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The possibility of an excitation of individual subharmonic perturbations in each of 
the shear layers forming the far wake is investigated numerically. Principal consid- 
erations allow for the existence of two equivalent subharmonic modes which by 
opposite routes can lead to a doubling of the wavelength in the wake. Since vortical 
disturbances in the far wake are amplified only convectively, the simultaneous 
existence of both modes in the flow field is possible, which could provide an 
explanation for the group structure observed experimentally in the far wake. These 
considerations also provide a logical explanation of the finding of a very regular 
vortex pairing process in forced wakes. 

Two-dimensional numerical simulations assuming incompressible flow and almost 
inviscid dynamics illustrate the opposite developments of regions dominated by the 
two different modes and also confirm the possibility of a resulting group structure. 
As an important result it is demonstrated that, if vortex pairing plays an important 
role in the growth of the far-wake structure, this does not have to be related to the 
excitation of the subharmonic peak in the frequency spectrum. Quite the contrary, 
it is to be expected that the subharmonic itself is of minor importance and that 
instead a small frequency and its multiples related to the group structure of the flow 
dominate the spectrum. In the light of these considerations measurements by 
Cimbala (1984) are discussed and frequency spectra recorded by him are analysed 
more closely. Various properties of these spectra seem to indicate that vortex pairing 
might be significant with respect to the evolution of the far-wake structure. 

1. Introduction 
The breakdown of the Karman vortex street and the subsequent formation of a 

secondary vortex street were first observed by Taneda (1959). He found the ratio of 
the lengthscales of the secondary and the primary street to lie between 1.8 and 10, 
depending on the Reynolds number. Other experimentalists have confirmed these 
observations, and two different explanations for the mechanism causing the break- 
down and the subsequent reordering have emerged. One of them attributes this 
process to vortex pairing, which has long been recognized as the mechanism 
responsible for the growth of single shear layers (Winant & Browand 1974). Matsui 
& Okude (1983) presented experimental evidence for the natural occurrence of vortex 
pairing in wake flows and they also demonstrated that forcing of the wake with 
one-half or one-third of the shedding frequency results in very regular pairings of the 
individual vortices on each side of the wake. The calculations of Aref & Siggia (1981) 
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also show the possibility of pairing in a Karmhn vortex street. They describe the 
evolution of a metastable vortex street which after a long time goes unstable and 
‘breaks down ’. During this process individual vortex structuree can undergo 
pairings. 

The other explanation for the evolution of the far-wake structure is based on linear 
stability considerations of the time-averaged wake velocity profile. Viscous effects as 
well as changes in the average wake profile in the streamwise direction, which damp 
waves that had been amplified further upstream, are held responsible for the 
disappearance of the Karman vortex street. The maximum amplification shifts to 
longer waves in the streamwise direction, which in turn leads to the formation of the 
secondary street. Among others, Cimbala (1  984) concludes from his experimental 
observations and stability calculations that this explanation is adequate for the 
generation of the far-wake structure. He found the energy spectrum to contain 
discrete peaks in the far wake, but in most cases the subharmonic frequency did not 
seem to play a prominent role, which he interprets as evidence against a pairing 
growth mechanism. On the other hand, his figure 6.3 seems to demonstrate a certain 
sensitivity of the wake flow to subharmonic disturbances. Cimbala’s measurements 
also confirm earlier findings by Townsend (1979), who observed a group structure of 
the secondary vortex street. The frequency is fixed within each group but can vary 
from one group to the next, i.e. a time record of a velocity fluctuation will show a 
single main frequency followed by a transition to a different frequency. A possible 
relation between this group phenomenon and the emergence of further frequencies 
besides the shedding frequency is discussed by Sirovich (1985). 

In the following, we attempt an explanation of the apparent discrepancy between 
the observation by Matsui & Okude of a very regular vortex pairing process in the 
forced wake and the measurements by Cimbala which do not indicate a special 
importance of the subharmonic frequency itself. We will present a new model for the 
growth mechanism of the wake which provides an explanation for many of the 
observations of both authors. It is suggested that each of the shear layers forming 
the wake is able to amplify individual subharmonic perturbations, similarly to the 
well-known behaviour of a single shear layer. As a consequence of the interaction of 
the two shear layers, this gives rise to the existence of two subharmonic modes for 
the wake flow, which could dominate different parts of the flow field in an alternating 
fashion. This mechanism then also provides an explanation for the observed group 
structure mentioned above as well as for some of the effects found in the numerical 
simulations by Aref & Siggia (1981). 

In $2 we will, after a brief reference to the single shear layer, discuss the possibility 
of an amplification of individual subharmonic perturbations in the two opposite shear 
layers forming the Karman vortex street. The impact of these perturbations on the 
interaction of the two sides of the vortex street will be analysed qualitatively, and 
it will be shown that they cause the vortex street to develop asymmetrically. 
Furthermore, i t  will be demonstrated that two different subharmonic modes are 
possible, each of which is related to a certain combination of the phase angles of the 
individual subharmonic perturbations of the shear layers. 

In order to investigate the nonlinear behaviour of the flow field, we simulated the 
evolution of two opposite shear layers numerically for various initial conditions. The 
results will be presented in $3. The numerical technique used for these simulations 
discretizes the vorticity field, an approach that had been used before for the analysis 
of wake flows by various authors, among them Aref & Siggia (1981). Leonard (1980, 
1985) gives a general overview of these vortex methods. The algorithm applied here 
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treats the temporally developing case, i.e. the flow is considered periodic in streamwise 
direction. It furthermore assumes two-dimensional, incompressible and almost 
inviscid dynamics. 

The various sets of initial conditions for which simulations have been carried out 
include cases where only one mode is present in the flow field, as well as cases 
containing both modes. The effect on both the evolution of the structure of the vortex 
street and the corresponding frequency spectra will be demonstrated. It will be shown 
how the presence of two subharmonic modes in the flow field can result in the 
cancellation of the subharmonic peak in the frequency spectrum. 

Finally, in $4 a discussion of the numerical results will be given. We will compare 
our numerically generated frequency spectra with the spectra recorded by Cimbala 
(1984) and reinterpret those in the light of our proposed model for the growth 
mechanism of the wake flow. The relation of our findings to experimental and 
theoretical observations of other authors will also be demonstrated, followed by a 
discussion of possible effects of viscosity and three-dimensionality, which are not 
included in the present numerical simulations. 

2. Influence of the phase angle of the subharmonic perturbation 
Let us first consider the single shear layer. A sinusoidal perturbation of wavelength 

2a of the initially parallel flow leads to the onset of the Kelvin-Helmholtz instability 
mechanism, which causes a roll-up into large-scale vortices. Among all phase angle 
values for waves with twice the wavelength of the basic disturbance (subharmonic 
waves), two phases, shown in figures 1 and 2, are of special importance (see Patnaik, 
Sherman & Corcos 1976 ; Riley & Metcalfe 1980 ; Corcos & Sherman 1984). If we define 
the reference point x = xo as the location of one of the vortices generated by the initial 
Kelvin-Helmholtz instability we can identify these two subharmonic waves yz(x) as 
having a phase difference A$ with respect to the basic wave yl(x) of an odd or even 
number of multiples ofin, respectively. Here yl(x) and yz(z) can be thought of as wavy 
dislocations of the initially straight vorticity layers related to the parallel shear flow. 
If a t  xo the subharmonic wave has a phase difference of an odd number of multiples 
of +a with respect to the basic wave (figure l ) ,  i.e. if it has its maxima and minima 
at  the positions where the basic wave has its strongest gradients, it  will alternately 
shift the evolving vortices up and down without changing their strength. This results 
in the vortices rotating around each other and finally in their merging or pairing. If, 
on the other hand, the phase difference is an even number of multiples of $a, the 
subharmonic will alternately strengthen and weaken the vortices without shifting 
their centres (figure 2). The stronger vortices will now ‘shred’ the weaker ones, which 
finally also leads to the doubling of the basic wavelength. 

Experimental observations as well as calculations (Riley & Metcalfe 1980 ; Corcos 
& Sherman 1984) indicate that in the single layer subharmonic waves with a phase 
difference of an odd number of multiples of in experience a stronger amplification. 
Consequently, in the following discussion of the amplification of subharmonic waves 
in the shear layers forming the wake we will confine ourselves to these subharmonic 
waves exclusively, although our analysis would also be valid in principle for other 
subharmonic waves. 

Let us now analyse two opposite shear layers disturbed with the same basic wave 
of length 2a, thus developing into two staggered vortex rows. Suppose each of them 
contains individual subharmonic perturbations of the above kind. If the shear layers 
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x = xo 

A# = # , - # a  = m - 4 ~  = 

FIGURE 1. If the phase difference Aq5 of the basic wave yl(z) and the subharmonic wave y2(z) at 
5 = zo is an odd number of multiples of trr the vortices will alternately be shifted up and down as 
indicated by the straight arrows. This will lead to the pairing of the individual vortices. 

x = x, 

A# = X - 0  = x 

FIQURE 2. If the phase difference Aq5 of the basic wave yl(z) and the subharmonic wave y&) at 
z = zo is an even number of multiples of tx the vortices will alternately be strengthened and 
weakened. This will lead to a period doubling through the shredding of the weaker vortices in the 
strain field of the stronger ones as indicated by the arrows. 

are far apart, they will only weakly interact and each of them will undergo a pairing 
transition, as shown by the calculations of Aref & Siggia (1981). The interaction 
becomes stronger as the distance between the layers decreases. Aref & Siggia find a 
critical ratio of the distance between the layers and the distance between the vortices 
in each layer of about 0.6, below which the individual vortices do not pair but instead 
form a metastable Karman vortex street. Their calculations show that after a long 
time this vortex street is unstable and ‘breaks down’. During this process vortices 
can pair or form neutral dipoles. These observations indicate that the growth of 
individual subharmonic disturbances within each of the shear layers does not 
abruptly diminish to  zero but may only slightly decrease as the interaction between 
the opposite shear layers becomes more significant. 

It now becomes obvious that, if the two staggered rows of vortices forming the 
Karman vortex street can have individual subharmonic disturbances Y ~ ~ ( x )  and 
Y ~ ~ ( x ) ,  respectively, with a phase difference of an odd number of multiples of !jn with 
respect to  the basic wave yl(x) a t  the respective reference points xOt and q,b, two 
different modes can appear (figure 3). If in the upper row the subharmonic 
perturbation yzt(x) has a phase difference of in, the subharmonic disturbance 
ySb(x) in the lower row can take values for the phase difference of in (figure 3a,  
mode A) or -in (figure 3 b ,  mode B), each of them leading to a different development 
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FIGURE 3. As a consequence of the subharmonic perturbations each vortex experiences a change 
in the relative impact of its two closest neighbours in the opposite row. This change induces a 
differential velocity, which is qualitatively indicated by the straight arrows. ( a )  Mode A :  the  phase 
difference between the subharmonic (---) and the basic wave (-) in both layers is in at the 
respective reference points. The differential-velocities induced by this configuration amplify the 
subharmonic perturbation in the upper row whereas in the lower row they slow its growth down. 
(b) Mode B:  here the phase difference between the subharmonic (---) and the basic (-) wave 
in the upper layer is in whereas in the lower layer it is -in. This configuration tends to amplify 
the growth of the subharmonic in the lower row and to  damp it in the upper row. 
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of the vortex street, as explained below. Here the respective reference points have 
been defined to be the centre of the leftmost vortex xOt for the upper layer; the 
reference point for the lower layer x0b then is the centre of the vortex in the lower 
row that follows to the right. For mode A (figure 3a)  the subharmonic perturbation 
yzt(5) indicated by the dashed wavy line in the upper row tends to shift vortices D 
and F up so that their influence on the vortices of the lower row decreases, whereas 
E and G are brought closer to the opposite layer which causes their influence on it 
to increase. The subharmonic disturbance in the lower layer yzb(x) plays a corres- 
ponding role there. If we now analyse the impact of the subharmonic perturbations 
of the neighbouring regions of both rows on, say, vortex E ,  we find that B has gained 
some influence on E since it has moved closer to E whereas the impact of A on E 
remains constant to a first approximation. This will induce a small differential 
velocity on E indicated by the arrow. If we carry out a corresponding analysis for 
all of the vortices we find that the induced velocities tend to amplify the subharmonic 
wave in the upper row, whereas the subharmonic perturbation of the lower row is 
being damped. This in turn will lead to an unsymmetrical development of the vortex 
street, causing the upper row of vortices to develop a subharmonic character faster 
than the lower one. 

The disturbances described above are of a different nature than those on which von 
Karman based his stability analysis of two staggered rows of point vortices (see, e.g., 
Lamb 1932). While von Karman treated the configuration of point vortices as one 
system which he perturbed with a single wave, we look at the flow as consisting of 
two separate but interacting rows of vortices, each of which can amplify individual 
disturbances. It would be of interest to carry out a stability analysis for the latter 
type of perturbations corresponding to the classical one that von KarmSn presented, 
and to compare the relative growth rates. Especially in the light of the findings of 
Meiron, Saffman & Schatzman (1984), that giving the vortices of a Karmin vortex 
street a finite core size does not change the stability characteristics drastically, a 
study along those lines could provide some information about how the linear growth 
rates of the perturbations examined in this paper compare to those studied 
previously. However, since the ultimate goal of this paper is to investigate the 
nonlinear evolution of a smooth velocity profile, the above qualitative argument 
concerning the stability of rows of concentrated vortices appears sufficient at this 
point and the quantitative linear analysis of the corresponding point-vortex confi- 
guration is left to future work. 

A corresponding analysis for mode B (figure 3b)  demonstrates that, if the 
subharmonic wave in the lower layer Yzb(5) is shifted by one basic wavelength 
compared with mode A, the opposite development will take place, and the subhar- 
monic perturbation of the lower row will now be amplified. From this analysis follows 
the possibility of the existence of two equally probable subharmonic modes for the 
wake flow which cause opposite developments of the vortex street. It should be 
mentioned that case A can be transformed into case B by shifting the whole flow field 
by half a basic wavelength in the flow direction and then rotating it around the 
centreline of the wake. 

From the above we can conclude that, if individual subharmonic perturbations are 
excited within each of the two shear layers of the wake, there are two modes that 
can be identified by the phase difference A$s = Aq5t-A$b of the subharmonic 
perturbations in the upper and lower rows, respectively, and that lead to an 
unsymmetrical development of the wake : 
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This takes us to the question of how the structure of the far wake might be 
determined in a real flow if individual subharmonic perturbations on each side of the 
wake play an important role. One could imagine that a random subharmonic 
disturbance might be amplified initially and then influence the whole flow field 
including the upstream region, thus locking the whole flow into one mode. However, 
as Koch (1985) has shown, linear vortical disturbances are amplified only convectively 
in the far wake, which means that they are damped in the upstream direction. Thus, 
at least within the frame of linearized theory, a single spatially and temporally 
confined disturbance in the far wake cannot cause the whole flow to lock into one 
mode, and so an alternating appearance of the two modes seems possible. 

In the following, two-dimensional vortex-street simulations for selected initial 
perturbations are presented. The consequences of the appearance of two different 
subharmonic modes with respect to the formation of the far-wake structure and the 
corresponding frequency spectra will be investigated. 

3. Two-dimensional numerical simulations of wake flows for selected initial 
disturbances 

Two-dimensional calculations using a discrete-vortex method were performed in 
order to illustrate the nonlinear development of wake flows for selected initial 
disturbances. We confine ourselves to the case of a temporally amplified flow, because 
this allows us to assume periodic boundary conditions in the streamwise direction. 
This approach appears to be legitimate since the flow conditions in the far wake vary 
slowly, which means that we deal with slowly growing perturbations of a base flow 
that does not undergo rapid changes in the streamwise direction. Far away from the 
centre of the wake we assume potential flow. The numerical technique is based on 
the Biot-Savart integral ” 

1 (x-x’) x w(x ’ )  
Ix - 4 3  

d W’) +up&), s u(x)  = -- 
4A 

which, for incompressible flow fields, enables us to calculate the velocity u at a given 
point x by integrating over the vorticity field and adding the potential-velocity 
component. Initially, each of the two shear layers is represented by a row of 
two-dimensional discrete vortex blobs with finite core radius u (figure 4). The finite 
core size results in a smooth distribution of the vorticity and thus avoids the 
singularity associated with the fact that for point vortices the distribution function 
of the vorticity has the shape of a &function. It requires the specification 
distribution function of the vorticity w (a scalar in two dimensions) over the 
radius r .  In  the present simulation, we employed 

4 . 1  a 1 -- -- r 

of a 
core 
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FIGURE 4. For the numerical simulations, the two sides of the average wake profile are represented 
by rows of vortex blobs which are perturbed at the beginning of the simulation. 

0.5 0.7 0.9 1.1 

FIQURE 5. The velocity profile represented by the initial configuration of the discrete 
vortex blobs. 

where a = 0.413, as suggested by Leonard (1980). Assuming inviscid dynamics, the 
velocity of vortex blob i located at xi can then be evaluated according to the 
Biot-Savart integral by summing the velocities that all other vortex blobs in the flow 
field with the respective circulations rj induce on blob i :  

* rj, l N  Yt-Yj U ( X J  = -- 
27t 1-1 (xi--$+ ( y i - y j ) 2 + a  

* I .  

, . -  
where N is the total number of vortex blobs in the flow field. 

Initially, the centres of the vortex blobs are about 0.125 core radii apart, so they 
have considerable overlap and form a smooth vorticity distribution. At the beginning 
of the calculation, the two rows of vortex blobs are perturbed by periodic dislocations 
of the blob centres in the transverse direction. From then on, the nonlinear 
development of the flow is calculated by evaluating the velocities of the vortex blobs 
at each time step and advancing them over a finite time step using a second-order 
predictor-corrector integration scheme 
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Simulation Mode A Mode B 
I entire flow field - 
I1 - , entire flow field 
I11 
IV 

x = 25.13 to 75.40 
x = 0 to 50.27 
x = 226.19 to 276.46 

x = 100.53 to 150.80 
5 = 75.40 to 125.66 
x = 150.80 to 201.06 

TABLE 1. The main features of the four wake-flow simulations 

X’ = ~ ( t )  +u(x,  t )  *At, 

x( t+At)  = x(t)+0.5* ( u ( x , ~ ) + u ’ ( x ’ ) )  *At. 

At the beginning of the simulation, the perturbation of the base flow is small, which 
allows us to start with a large time-step. During the calculation, the time-step is 
continuously being reduced, according to the criterion that the difference in the 
velocities obtained for a vortex a t  the predictor step and the corrector step, 
respectively, multiplied with the actual time-step should never exceed 2 % of the core 
radius of the blobs. This criterion was established during test calculations and has 
proven reliable in reducing the time-step when local acceleration effects increase. The 
core size and the shape of the vortex blobs were left unchanged throughout the 
simulation, i.e. the effect of the local strain field on the form of the vortex core was 
neglected. Discretization errors appearing in the course of the numerical integration 
perturb the flow in addition to the initially imposed disturbances and can cause 
wavelengths other than the initially introduced ones and their harmonics to be 
excited as well. 

At the beginning of the simulation, the shear layers have a transverse separation 
of 3 unit lengths, the unit length being the diameter of the vortex blobs. This, together 
with a potential-velocity component in the form of a uniform parallel flow of unit 
velocity 1, results in the initial undisturbed wake profile depicted in figure 5. The 
velocity defect depends on the circulation per unit length of the shear layers. The 
basic wavelength is 27t in all calculations. The ratio of the distance between the two 
layers and the streamwise wavelength comes to 0.48 and lies well within the regime 
in which Aref & Siggia (1981) observed the formation and subsequent breakdown of 
vortex streets. Unless otherwise stated, the amplitude of the initial wavy perturba- 
tions is 0.1, which is small compared to the distance between the layers. Comparisons 
carried out for a test case have shown that an initial amplitude of 0.01 yields 
qualitatively the same results. Time is non-dimensionalized with the unit length and 
the free-stream velocity. The time-step is taken as 10 initially and is then reduced 
by about two orders of magnitude in the course of the simulation. The flow fields are 
visualized by means of contour plots of the vorticity distribution as well as by 
frequency spectra. These are obtained by analysing the flow field at a fixed time and 
Fourier transforming the v-velocity signal at  the arbitrarily chosen y-coordinate of 
1.8 for a large number of z-positions. In order to facilitate the interpretation of the 
spectra, all frequencies are normalized with the frequency of the basic wave and all 
amplitudes are referred to the highest one. From these spectra we can determine the 
relative amplification of the various wavelengths. 

We have carried out a total of four simulations, the main features of which are 
listed in table 1. 

Let us first consider the results obtained from simulation I in which each shear layer 
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Ah= A$b 

c 

0 25 
FIGURE 6. The phase relations of the subharmonic perturbations in the upper and the lower 

layer ws. the streamwise coordinate (simulation I). 

is initially disturbed by the same basic wave and in addition has an individual 
subharmonic perturbation which is the same over the entire length of the control 
volume (figure 6). This means that of the two subharmonic modes described above 
only one mode is present; for simulation I this is mode A. The control volume contains 
eight basic wavelengths, and each layer is discretized into 765 vortex blobs. A t  the 
beginning of the simulation the amplitudes of the basic and the subharmonic 
perturbations are equal. During the initial stages the basic wavelength experiences 
a stronger amplification which causes its peak to dominate the frequency spectrum 
at t = 34.4 (figure 7). It is obvious that, owing to the interaction of the layers, the 
subharmonic perturbation is initially amplified more strongly in the upper layer, 
whereas it is damped in the lower one (figure 8). The nonlinear development later 
causes a reversal and the subharmonic then grows faster in the lower layer. We see 
that the pairing process, which is clearly visible from the vorticity plots, proceeds 
at  different speeds on both sides of the wake. We consider it to be completed when 
the vorticity contour plots show only one maximum of the vorticity distribution 
instead of two. In the lower layer this has happened by t = 471.9, whereas in the upper 
layer it takes until about t = 596.9. From the energy spectrum we recognize that, 
after initially dominating the flow, the relative energy contained in the basic 
wavelength continuously decreases towards the end of the simulation, whereas the 
subharmonic peak increases. We further observe that, due to discretization errors 
that occur in the process of integration, wavelengths other than those introduced at 
the beginning and their harmonics are also being excited. These waves present 
harmonics of the longest possible waves having the length of the control volume. 

Next consider a configuration (simulation 11) that initially is identical with the 
previous one except for the subharmonic perturbation of the lower layer which has 
been shifted by one basic wavelength (figure 9). This means that now mode B 
dominates throughout the entire flow field. As should be expected from the reasons 
given above the wake now develops in a manner opposite to the case just described, 
as shown in figures 10 and 11. The subharmonic disturbance is a t  first amplified more 
strongly in the lower layer, and later the pairing proceeds faster in the upper layer 
(figure 11). Only discretization errors can cause other wavelengths than those in 
simulation I to be amplified, as can be seen from the frequency spectrum (figure 10). 
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FIGURE 7. Energy spectra for simulation I, with mode A dominating the flow field, at times (a) 
t = 34.4, ( b )  159.4, (c) 346.9, (d) 471.9, (e) 596.9. f = 1 is the frequency of the basic wave, f = 0.5 
denotes the subharmonic wave. Initially the amplitude of the basic frequency experiences the 
strongest growth, but later most of the energy is contained in the subharmonic peak. 

The fact that the v-velocity signal is still being recorded at  the same position as in 
simulation I, is responsible for variations in the amplitudes of the various frequencies. 

The above computational results indicate that the forced vortex street can change 
its lengthscale as a consequence of the pairing process. The numerical simulations 
also confirm the existence of two modes leading to opposite developments of the 
pairing transition. 

In order to find out how a vortex street develops if both modes appear we have 
carried out simulation 111. The control volume now contains 24 basic wavelengths 
and each layer is represented by 2365 discrete vortex blobs. The initial subharmonic 
disturbance, which now has an amplitude of 0.2, is constant throughout the control 
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FIGURE 10. Energy spectra for simulation 11, with the flow dominated by mode B, at times (a) 
5 = 34.4, ( b )  96.9, ( c )  471.9. The spectra show no principal differences compared to those of 
mode A. 

volume for the upper row and has a phase difference A$t of in. In the lower layer 
periods 5-12 (Z = 25.13 to 75.40) are now subject to the subharmonic perturbation 
with a phase difference A$,, of in and periods 17-24 (Z = 100.53 to 150.80) are subject 
to a subharmonic wave of phase difference A$b = !gt (figure 12). This means that we 
should expect mode A in the region containing periods 5-12 and mode B in the region 
of periods 17-24. In the energy spectrum (figure 13) this is initially reflected by the 
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FIGURE l l .  Vorticity contours of flow simulation 11. Times as for figure 10. The development of 

the vortex street now proceeds in a manner opposite to simulation I. 

0 i o  140 
FIGURE 12. The phase relations of the subharmonic perturbations in the upper and the lower layer 
vs. the streamwise coordinate (simulation 111). From z = 25.13 to 75.40 they correspond to mode 
A, whereas from x = 100.53 to 150.80 they represent mode B. 

appearance of odd multiples of a small frequency f, = describing the periodicity 
of the whole flow field with the control volume. The nonlinear development, however, 
causes the even multiples to be excited as well. The peak denoting the subharmonic 
wave is due to the subharmonic perturbation of the upper row only. The subharmonic 
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FIGURE 13. Energy spectra for simulation I11 at times (a) t = 26.3, ( b )  213.8, (c) 631.3. In addition 
to the basic and the subharmonic frequency, the multiples of a small frequency fi describing the 
periodicity of the whole flow field are amplified. Again the maximum energy shifts from the basic 
to the subharmonic frequency in the course of the simulation. 

disturbance of the lower layer does not cause the subharmonic frequency to appear 
in the spectrum as long as the numbers of wavelengths with opposite phase relations 
are equal. The envelope of the peaks of the small frequency and its multiples, 
however, has its maximum close to the wavelength dominating within each of the 
subharmonic wavetrains, i.e. close to f = 0.5. 

A t  the beginning of the calculation the basic wavelength again experiences the 
strongest amplification (figure 14). Soon configurations form in the different regions 
of the flow field that correspond to those observed in the above simulations, so that 
each mode dominates a different part of the flow. This is again reflected by the fact 
that the subharmonic frequency and multiples of the small frequencyf, close to it 
develop the highest amplitudes, whereas the energy of the basic wave decreases. It 
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FIQURE 15. The phase relations of the subharmonic perturbations in the upper and the lower layer 
m. the streamwise coordinate (simulation IV). These disturbances correspond to mode A from x = 0 
to 50.27 and from x = 226.19 to 276.46, whereas they represent mode B from z = 75.40 to 125.66 
and x = 150.80 to 201.06. 
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FIQURE 16. Energy spectra for simulation IV. Note that owing to the cancellation effect of 
subharmonic waves with different phase values the subharmonic peak does not show up. Besides 
the basic frequency f k  = 1 the small frequency fi = f r / 4  representing the periodicity of the whole 
flow field and its multiples are excited. In the course of the calculation the energy shifts from f k  

t o  the peaks of those multiples of fi located in the neighbourhood of 4 f k .  
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becomes obvious that the presence of subharmonic perturbations with different phase 
relations can lead to the appearance of groups within which the lengthscale of the 
vortex street increases as a consequence of vortex pairing. 

A real flow with purely random perturbations should contain subharmonic waves 
with all phase values both in the upper and in the lower layer. If averaged over a 
large number of basic wavelengths, the number of wavelengths with opposite phase 
relations should be approximately equal. I n  order to simulate this case we have 
carried out simulation IV, which contains both kinds of subharmonic waves in both 
the upper and the lower layer (figure 15). The control volume now contains a total 
of 49 wavelengths, each discretized into 91 vortex blobs in each layer. I n  the upper 
layer the subharmonic has the phase difference = in for periods 1-8 (z = 0 t o  
50.27) and 13-20 (z = 75.40 to  125.66), and -in for periods 25-32 (z = 150.80 to  
201.06) and 3744  (z = 226.19 to 276.46). The lower layer is initially perturbed by 
a subharmonic wave of A& = in for periods 1-8 and 25-32 and by one of A$,, = -in 
for periods 13-20 and 3744.  This way the four possible combinations of the upper 
and lower subharmonic waves occur with each combination being confined to a region 
of eight basic wavelengths. These four regions are separated by transitional regions 
in which initially only the basic perturbation is present. Since in each layer the 
numbers of wavelengths with opposite phase relations are equal, the subharmonic 
peak in the frequency spectrum is not excited (figure 16). The small frequency and 
its multiples that  appear in the spectrum reflect the periodicity of the flow field with 
the control volume. We recognize that again in the regions dominated by one of the 
modes a very regular vortex pairing process takes place which leads to the growth 
and a change in the lengthscale of the vortex street (figure 17). I n  the regions where 
the transition from one mode to  the other occurs the structure appears to be rather 
irregular, and a specific pattern is not recognizable. Here a pairing of two like-signed 
vortices can happen as well as the formation of a neutral dipole consisting of two 
opposite-signed vortices. This strongly nonlinear behaviour observed in the transition 
regions might be related to  the fact that  they are rather short and that at the border 
between a transitional region and a region dominated by one of the modes the 
amplitude of the subharmonic wave does not increase smoothly but in the form of 
a step function. 

4. Discussion 
The results of the inviscid calculations presented above suggest that vortex pairing 

is able to account for the growth of the vortex street. At the same time it becomes 
obvious that, if individual subharmonic perturbations of each side of the wake are 
responsible for the pairing, the subharmonic frequency does not have to  play a 
prominent role in the spectrum. Instead, the possible alternating existence of two 
subharmonic modes, which dominate different parts of the flow field, can lead to  the 
appearance of a small frequency and its multiples. While the two subharmonic modes 
cause a cancellation of the subharmonic peak in the spectrum, the envelope of the 
multiples of the small frequency is expected to  have its maximum close to  the 
subharmonic peak. 

The hypothesis of two different subharmonic modes dominating different parts of 
the flow field is supported by the experimental observation of a group structure of 
the far wake by Townsend (1979) and Cimbala (1984). They find that these groups 
have different frequencies, but the fact that within each group the frequency remains 
constant underlines their regular structure. 
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If we compare our numerical results in more detail with the experiments carried 
out by Cimbala (1984) for a Reynolds number of 140 we find a number of common 
features. An analysis of his figure 5.5 (figure 18) shows that by x/d = 40 discrete 
frequencies have appeared, predominantly close to  the shedding frequency. In  this 
case, d denotes the diameter of the cylinder that  was used to  generate the wake. As 
far as we can conclude from the resolution provided by the figures given in Cimbala’s 
report, all these frequencies can be explained as multiples of a small frequency of 
about 6.41 Hz, which could be taken as evidence for the formation of a very regular 
group structure. It is unknown at present, however, what could be the reason for such 
a strong periodicity of the groups. Acoustic effects might play a role here, i.e. a feed- 
back loop might exist similar to the case investigated by Koshigoe, Yang & Culick 
(1985) for the single shear layer. If the group structure is the reason for the emergence 
of the discrete frequencies, the fact that  most of the peaks are located close to  the 
shedding frequency indicates that  a t  this position the pairing process within the 
groups has not yet proceeded very far, so that within the groups the shedding 
frequency still dominates. At x/d = 100 Cimbala also observes discrete frequencies 
which do not contain the subharmonic itself but show the highest peaks in its 
neighbourhood. They can again be interpreted as multiples of the small frequency 
of 6.41 Hz. In  the light of our very similar numerical results this could mean that 
the pairing process now has experienced considerable amplification within the groups. 
At x/d = 350 the peaks of the discrete frequencies have shifted to  the proximity of 
the second subharmonic, and they can still be expressed in terms of multiples of the 
same small frequency. This could indicate a second pairing transition within the 
groups. 

Cimbala’s experiments for Re = 150 (figure 19) also seem to support the consider- 
ations presented here. Some of the discrete frequencies can be interpreted as 
multiples of the small frequency of about 16.6 Hz. At x/d = 100 the highest peaks 
have again shifted to the neighbourhood of the subharmonic frequency, and a t  
x/d = 200 they cluster around the subharmonic even more clearly. But notiall of the 
discrete frequencies can be expressed in terms of multiples of one basic frequency as 
was the case for Re = 140. This might be related to the fact that a t  Re = 150, which 
is closer to the transition to  turbulence, the periodicity of the flow has deteriorated, 
so that groups of different lengths could have appeared, which would cause the 
spectrum to develop a more complicated structure. Frequency spectra of finer 
resolution would certainly be helpful for a more detailed investigation. 

I n  the light of the above discussion the very regular vortex pairing observed by 
Matsui & Okude (1983) in the forced wake now appears logical since the forcing 
prevents the existence of two different modes. Matsui & Okude’s photographs also 
reveal that  the two sides of the wake proceed towards a pairing a t  different speeds, 
which confirms our above analysis of the different growth rates of the respective 
subharmonic perturbations of the two rows of vortices. 

The appearance of two competing subharmonic modes might also be the reason 
for the breakdown of the two-dimensional temporally amplified vortex street 
analysed by Aref & Siggia (1981). In  their figure 12 the random perturbations are 
of such a nature that in the lower row vortices A and B, and E and F do pair (initially 
C and D also seem to proceed towards a pairing), while in other parts of the flow field 
none of the modes seems to dominate. 

The assumption of almost inviscid dynamics presents a major limitation of our 
work. Viscous effects might play a significant role in the evolution of the far-wake 
structure, especially for low Reynolds numbers, and they should be included in future 
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FIGURE 19. Frequency spectrum in the far wake of a circular cylinder of diameter d for Re = 150 
as recorded by Cimbala (1984). (a) At x / d  = 100 a number of peaks can be interpreted aa multiples 
of fi z f k / l O .  Some of the highest peaks occur close to the shedding frequencyfk, whereas others 
cluster around its subharmonic. By comparison with the spectra for Re = 140 we find that the 
periodicity of the flow has deteriorated and that we can no longer express all peaks in terms of 
f,. (b) A t  xld = 200 the highest peaks occur in the neighbourhood of the subharmonic of f k .  

numerical studies. A t  this point we can only make a few tentative suggestions as to 
the influence of viscosity. In  the transitional regions between the groups viscous 
effects can lead to the cancellation of vortices of opposite signs, thus resulting in the 
loss of some of the individual vortex structures. One could imagine that upon this 
cancellation of vorticity in the transitional regions, which is expected to become more 
significant as the Reynolds number decreases, the regular structure of the 
neighbouring regions might slightly change its wavelength and ‘fill up’ part of the 
transitional region, thus causing the new lengthscale of the vortex street not to be 
exactly twice the old one but slightly larger. This way viscous effects could influence 
the ratio of the lengthscales of the secondary and the primary vortex streets. 
Decreasing influence of viscous forces thus would result in a lower ratio of these 
lengthscales. This points in the same direction as Taneda’s (1959) observations. In 
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the Reynolds number regime 50 < Re < 150 he found this ratio to decrease from 
slightly above 3 to about 2. The loss of individual structures in the transitional region 
by viscous effects together with the subsequent extension of the regular region could 
also be related to Cimbala’s (1984) observation that the frequency of the secondary 
vortex street varies from group to group. 

Our argumentation so far has been purely two-dimensional, but the existence of 
different modes along with viscous effects can also be of importance for the spanwise 
structure of the flow field. Just as different subharmonic disturbances have an 
opposite influence on the development of the flow a t  varying streamwise positions, 
the same can be the case in the spanwise direction. This could lead to a configuration 
in which the spanwise vortex B might pair with A a t  one spanwise position and with 
C at another position, with a consequent transitional region in between. Here viscous 
forces might again have the effect of cancellation of some of the vorticity of opposite 
signs, thus possibly leading to changes in the topological structure. The relinking of 
the vortices could cause the formation of vortex loops, about which there has been 
some speculation in the literature (see Roshko 1976). In this respect the wake would 
behave fundamentally differently from the single shear layer where only one sign of 
vorticity is present. This could be related to observations by Breidenthal(i980) which 
indicate that the wake is more sensitive to variations in the spanwise direction than 
the single shear layer. It should be emphasized, however, that at present all the 
possible consequences related to viscous and three-dimensional effects are speculat- 
ive. Future investigations should include further experiments as well as viscous and 
three-dimensional calculations in order to clarify to what degree the stability 
characteristics of the average wake profile and the process of vortex pairing are 
responsible for the change of the lengthscale of the unforced wake flow. 

The author wishes to express sincere thanks to Dr W. T. Ashurst for discussions 
on both the numerical and the physical aspects of the problem under consideration. 

R E F E R E N C E S  

AREF, H. & SIQQIA, H., 1981 Evolution and breakdown of a vortex street in two dimensions. J. 

BREIDENTHAL, R. 1980 Response of plane shear layers and wakes to strong three-dimensional 

CIMBALA, J. M. 1984 Large structure in the far wakes of two-dimensional bluff bodies. Ph.D. thesis, 

CORCOS, G. M. & SHERMAN, F. S. 1984 The mixing layer: deterministic models of a turbulent flow. 

KOCH, W. 1985 Local instability characteristics and frequency determination of self-excited wake 

KOSHIQOE, S., YANQ, V. & CULICK, F. E. C. 1985 Calculations of interaction of acoustic waves 

LAMB, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. 
LEONARD, A. 1980 Vortex methods for flow simulation. J. Comp. Phys. 37, 289-335. 
LEONARD, A. 1985 Computing three-dimensional incompressible flows with vortex elements. Ann. 

Rev. Fluid Mech. 17, 523-559. 
MATSUI, T. & OKUDE, M. 1983 Formation of the secondary vortex street in the wake of a circular 

cylinder. In  Structure of Complex Turbulent Shear Flow, IUTAM Symposium, Marseille, 1982 
(ed. R. Dumas & L. Fulachier). Springer. 

MEIRON, D. I., SAFFMAN, P. G. & SCHATZMAN, J. C. 1984 The linear two-dimensional stability of 
inviscid vortex streets of finite-cored vortices. J. Fluid Mech. 147, 187-212. 

Fluid Mech. 109, 435-463. 

disturbances. Phys. Fluids 23, 192!3-1934. 

California Institute of Technology. 

Part 1. Introduction and the two-dimensional flow. J. Fluid Mech. 139, 29-65. 

flows. J. Sound Vib. 99, 53-83. 

with a two-dimensional free shear layer. AIAA paper 85-0043. 



Subharmonic perturbations in the far wake 107 

PATNAIK, P. C., SHERMAN, F. S. & CORCOS, G. M. 1976 A numerical simulation of Kelvin- 
Helmholtz waves of finite amplitudes. J .  Fluid Mech. 73 ,  215-240. 

RILEY, J. J. & METCALFE, R. W. 1980 Direct numerical simulation of a perturbed, turbulent 
mixing layer. AZAA paper 80-0274. 

ROSHKO, A. 1976 Structure of turbulent shear flows: a new look. AZAA J .  14, 1349-1357. 
SIROVICH, L. 1985 The KLrmLn vortex trail and flow behind a circular cylinder. Phys. Fluids 28, 

TANEDA, S. 1959 Downstream development of the wakes behind cylinders. J. Phys. Soc. Japan 

TOWNSEND, A. A. 1979 Flow patterns of large eddies in a wake and in a boundary layer. J .  Fluid 

WINANT, C .  D. & BROWAND, F. K. 1974 Vortex pairing: the mechanism of turbulent mixing layer 

2723-2726. 

14, 843-848. 

Mech. 95, 515-537. 

growth at moderate Reynolds number. J .  FZuid Mech. 63, 237-255. 


